
SOFTWARE|PRACTICE AND EXPERIENCE, VOL. 0(0), 1{25 (? 1995)IUP/LED: A Portable User Interface Development ToolC. H. Levy, L. H. de Figueiredo, M. Gattass, C. J. P. LucenaDepartamento de Inform�atica, PUC-RioRua Marquês de S~ao Vicente 225, 22453-900 Rio de Janeiro, RJ, Brazillevy,lhf,gattass,lucena@icad.puc-rio.brANDD. D. CowanComputer Science Department & Computer Systems GroupUniversity of Waterloo, Waterloo, Ontario, Canada N2L 3G1dcowan@csg.uwaterloo.caSUMMARYMinimizing the amount of code that must be written and maintained is particularlycritical in the development of the user interface for a highly interactive system, sincethe code for the user interface still represents a substantial part of the application. Thisis especially important where the interactive system is available on a number of distinctplatforms. Providing a single user interface abstraction requiring only one set of sourcecode that can be mapped automatically into speci�c interface systems appears to be thepreferred approach, but the underlying model must be designed carefully in order tokeep the system relatively simple, easy to use and maintain, and allow ease of experi-mentation as user interfaces are produced. We describe the design and implementationof IUP/LED, a portable user interface toolkit that we believe has these properties. Thetoolkit is designed for rapid prototyping and modi�cation, to provide a look-and-feelappropriate to a speci�c computing environment, is easily expanded to support newinterface developments, and supports an abstract layout model. We also present a sum-mary of the experiences in using the toolkit to indicate that it does support the originaldesign objectivesKEY WORDS Software User Interfaces User Interface Toolkits User Interface Management SystemsRetargetability User interface resources INTRODUCTIONUser Interface Toolkits (UITs) and User Interface Management Systems (UIMSs)1 aretwo major classes of software for constructing graphical user interfaces. A UIT is alibrary of interface objects that implement di�erent interaction techniques with theuser; tools in this class are available as functions that are called by the applicationto create and control the dialog with the user. Some UITs are: XView2, OSF/Motif3,OLIT4, SDK for MS-Windows5, and the Macintosh User Interface Toolbox6. UITsfrequently o�er tools to simplify the description and the composition of interface ob-jects. These tools range from simple resource languages to graphic editors that buildCCC 0038{0644/95/000001{25 Received ?c1995 by John Wiley & Sons, Ltd. Revised ?

2 C. LEVY, L. FIGUEIREDO, M. GATTASS, C. LUCENA, D. COWANinterfaces through direct manipulation of interface objects. However, management ofthe interaction with the user must be programmed as part of the application, evenwhen supported by a toolkit.In contrast, a UIMS is a group of integrated high level interactive programs used todesign, create prototypes, execute, evaluate and maintain user interfaces1. Two suchUIMSs are the University of Alberta UIMS7 and DMS8. In a sense, UIMSs encompassUITs since they allow not only the description and composition of the interface ob-jects, but also the speci�cation of the control of the user interaction sequence9. UIMSsassume that application development is a joint undertaking of two experts: one expertin the application domain and another in user interfaces. The �rst expert solves thecomputer application problem, while the second expert works with the related psy-chological, cognitive, ergometric and linguistic human factors to design an appropriateinteraction between the user and the application1.Many commercial interface systems, such as Visual Basic10, only support the con-struction of dialogs�; they do not allow any control over the interaction sequence,which is then programmed as part of the application. Therefore, these systems cannotbe classi�ed as UIMS, even though they are integrated systems. Figueiredo et al.12proposed a tool for the automatic generation of interfaces for data entry to programsfor engineering simulation and optimization. Although this tool is not an integratedapplication, it can be considered as a UIMS because it contains all aspects of userinterface design.Recently, a new generation of UIMSs has appeared: User Interface DevelopmentSystems (UIDS)13. UIDSs use knowledge bases on interface design techniques andsoftware design principles to help the interface speci�cation process14. In contrastwith UIMSs, which need interface experts, the integration provided by UIDSs allowsusers themselves to be the interface experts.According to Myers 15 \The challenges for future tool creators seem to be to providetools which are easier to learn and which signi�cantly increase the e�ciency of the userinterface designers. The three types of tools already described support the constructionof programs with user interfaces, but they do not attack many important aspects ofthe problem which would contribute to ease of use and designer e�ciency. These twoimportant characteristics can be a�ected by several factors including the capabilityto:� develop applications on multiple platforms from the same speci�cation;� specify the user interfaces in a platform-independent fashion yet with the look-and-feel of a speci�c platform (native look-and-feel);� use the same development system on multiple computer platforms;� rapidly prototype the user interface before the application code is written;� rapidly prototype the user interface without impacting other parts of the appli-cation;� easily incorporate modi�cations including those discovered through demonstra-tion and user testing;� produce multiple user interfaces for the same application;� minimize the amount the user of the tools must learn before becoming productive;� In this paper, dialog is mainly used in the following technical sense: a dialog is \any interactive exchange ofinformation that takes place in a limited spatial context"11. In IUP/LED, dialogs are implemented as toplevel windows containing primitive interface elements, such as buttons or lists.

IUP/LED: A PORTABLE USER INTERFACE DEVELOPMENT TOOL 3� minimize the number of di�erent types of expertise required to design and pro-totype an interface;� and be expandable to take advantage of any new user interaction modes.Certainly the construction of a portable UIT supporting an abstract layout modeland allowing some degree of run-time binding can form a solid base for the constructionof more complex user interface tools that encompass these factors. The CIRL/PIWI 21toolkit provided a partial solution by supporting the development of applications formore than one platform and using an abstract layout model for platform-independentimplementation. The goal of this paper is to describe the design and implementationof a portable user interface toolkit developed by the Ponti�cal Catholic University inRio de Janeiro (PUC-Rio) and named IUP/LED which considers all these previouslymentioned factors in its design.SOFTWARE PORTABILITYIn order to maximize use and return on investment, an interactive program should becapable of executing under many di�erent operating environments and graphical userinterfaces with appropriate look-and-feel. Such systems as MS-DOS, MS-Windows,OS/2, Macintosh, Motif/X11, Open Look/X11, IBM VM/CMS, and VAX/VMS mayneed to be supported. Since these environments are quite di�erent from each other, thisgoal is di�cult to achieve without adequate tools for developing portable programs,especially interactive graphic applications. The main factors a�ecting portability are:� hardware di�erences, such as byte ordering and addressing;� operating and �le system di�erences, such as multiprocessing capabilities andcase sensitivity. Even systems that follow the same basic standards, such as thevarious avors of Unix, have subtle di�erences that can hamper portability ifdevelopers are not careful16;� compiler di�erences, such as the default size of an integer which may be importantfor programs that handle binary �les. In addition, each compiler o�ers proprietaryfunction libraries that can introduce further incompatibilities;� graphic devices that can support di�erent resolutions and numbers of colors, andmay or may not use a graphic processor;� and di�erent application programmer interfaces (APIs) for each type of graphicaluser interface system.A detailed discussion of how these factors impact portability is presented in17, 18. Theimpact of changes on operating systems and programming languages can by minimizedby using de facto standards such as Posix19 and ANSI C20. If any platform dependentcode still remains, the simple strategy of isolating the dependent code and documentingits functionality can be used so that a future implementation in another environmentis easier. However, the diversity of interface systems does present some interestingproblems, which are discussed next.Programming portable user interfacesProgramminggraphical user interfaces, such as MicrosoftWindows, Presentation Man-ager, Macintosh Toolbox, Motif, and Open Look, is conceptually the same task for

4 C. LEVY, L. FIGUEIREDO, M. GATTASS, C. LUCENA, D. COWANthe various platforms, since most graphical user interface systems use the desktopmetaphor and corresponding applications usually have a similar look-and-feel. How-ever, the APIs in these systems are quite complex, with hundred of functions. More-over, application programmers often must be experts in several systems, because ofthe many di�erences in the various toolkits.The best solution to this problem would be to use a de facto standard interfacesystem. Since there are no such systems available, an alternative solution would be touse an international standard, but e�orts in this direction have not yet been successful.The only other way to avoid dependencies on speci�c computer platforms is to useproprietary tools for building portable interfaces such as CIRL/PIWI21 or XVT22.Even though an application built with these tools does become device-independent, itnow depends on the manufacturer of the tools, because they are proprietary and donot follow an international standard.There are many strategies for building a portable interface tool. The simplest ap-proach is to develop a tool that provides the functionality common to all supportedinterface systems. Even though this strategy is simple to follow, applications that usethis strategy typically have inadequate support for color and character fonts. Anotherdisadvantage is that applications may have to implement interaction mechanisms thatdo not appear in all interface systems such as list selection boxes or �le selectiondialogs.A di�erent strategy is to port a complete interface system to all environments, with-out using native interface systems, but instead relying on native graphics functions.A characteristic of this solution is that all applications have the same look-and-feelin all computer environments. This may be an advantage for the users of the sameapplication in di�erent environments, but when the application is used by one user inonly one machine, the look-and-feel of the application will probably not be consistentwith the look-and-feel of the other applications provided by other suppliers.The creation of a toolkit, implementing a portable user interface metaphor, is agood strategy for the development of portable tools. A toolkit maps abstract interfaceelements to the native system elements of the local environment of an application.Thus, the application inherits the look-and-feel of the native system. This solutioncan increase the productivity of the users of many di�erent applications on the samemachine, since those users may use techniques already learned in that environment.On the other hand, the user of only one application in di�erent machines will su�er, forthis user will have to learn how the program works in many environments. However,we believe this situation is not as common.The major problem with this strategy is creating a portable metaphor for UITs.Such a metaphor is de�ned by the IUP toolkit. This toolkit supports both �xed look-and-feel and native look-and-feel, because, in addition to drivers for many commoninterface systems, a complete, portable interface system was also written.COMPARISON OF DE FACTO STANDARDSIn order to develop a toolkit, existing interface systems must be considered �rst. Inthis section, we examine the systems that have become de facto standards including:Motif, Open Look/XView, MS-Windows and Macintosh Toolbox.A comparison among these interface systems makes it clear that Motif is the mostcomplete environment for dialog speci�cation. Through its User Interface Language

IUP/LED: A PORTABLE USER INTERFACE DEVELOPMENT TOOL 5(UIL), it is possible to separate the programming of interface elements from the mainprogram code, allowing rapid prototyping. On the other hand, Motif has so manyelements, the UIL is so powerful, and there are so many di�erent forms to composedialogs that application programmers may have di�culty making reasonable choices.XView, on the other hand, is a very compact toolkit that o�ers an easily learned rel-ative positioning model to compose dialogs. Nevertheless, since it does not provide adialog speci�cation language, it is not easy to separate the user interface from the ap-plication, thus increasing prototyping time. The Macintosh Toolbox and MS-Windowsdo not o�er any abstract model for de�ning layouts, forcing programmers to know thesize and position of each interface element while drawing the dialogs to scale.In order to avoid having to design dialogs to scale numerically, Macintosh systemsinclude a graphic editor for the construction of dialogs through direct manipulation ofinterface elements. In MS-Windows, this type of editor is provided by programmingtools that permit the speci�cation of certain kinds of dialogs, such as the BorlandC++ compiler, Microsoft C compiler, Visual Basic, and Microsoft Access. These toolshelp in specifying a layout, but they do not use an abstract model of a layout. As aconsequence, the dialogs created visually cannot react automatically to any change intheir size.There are interactive dialog editors for other interface systems, but almost all ofthem specify the dialog layout by using a concrete rather than an abstract model. Inaddition, other tools, such as Guide for Open Look with XView, create descriptionsthat need to be translated, compiled, and linked to the application before its execution,thus limiting their utility for rapid prototyping. Exceptions are the ibuild dialog editorInterViews23 and FormsEdit for FormsVBT24: both use the boxes-and-glue paradigmof TEX25 to model abstract layout.The FormsVBT dialog editor provides two views of the dialog speci�cation: a textdescription of the dialogs in a Lisp dialect and a graphical representation that canbe directly manipulated by an interactive editor. The user can interact with bothviews; changes in one of the views are reected in the other. This combination has theadvantages of both text description and direct manipulation of the WYSIWYG type,without any of their limitations.For layout description, IUP/LED uses an abstract layout model based on the boxes-and-glue paradigm of TEX25, and similar to the ones used in InterViews23 and FormsVBT24.This model allows dialogs to be speci�ed without explicitly de�ning the position of in-terface elements, thus enabling automatic repositioning of the interface elements whenthe size of the dialog changes.In interactive programs, the communication between the application and the user isby nature bidirectional, through dialogs. The application builds dialogs, makes themvisible, and then waits for and reacts to user actions. There are two basic models forintegrating an application with user actions managed by dialogs: callbacks and events.The callback model associates an application function with each possible action overthe interface elements. The toolkit captures events generated by the user, providesfeedback, and then executes the corresponding application routines. This model isused by XView and by the toolkits based on the X Window Intrinsics Toolkit, suchas Motif and OLIT. Other systems, such as Xlib, MS-Windows and the MacintoshToolbox, use the event model. In this model, the system queues all events generatedby the user; the application takes the events from the queue, interprets them and callsthe appropriate routines.

6 C. LEVY, L. FIGUEIREDO, M. GATTASS, C. LUCENA, D. COWANThe callback model and the event model are equivalent. The callback model maybe converted to an event model by associating all actions with a single applicationroutine that would handle all events. Conversely, the event model can be convertedto a callback model by building a software layer containing an event handler routineand the routines responsible for associating the application with corresponding userevents.The event model may be ine�cient because all events are queued, even those that arenot handled by the application. For highly interactive applications that need to providefast response, this complete queueing may be a limiting factor if the events with nodirect meaning for the interface happen too often. For instance, the events generatedas the user moves the mouse without pressing any button are not usually meaningfulto applications. In this context, when the user moves the mouse, there is no intentionof interacting with the dialog over which the mouse passes, but only to position themouse over an interface element to start an interaction. Nevertheless, when the mousepasses over a dialog, many events are generated, such as: enter window; many mousemovements; leave window. The X window system uses a client-server architecture;the application may not be executing on the same machine as the one with whichthe user is interacting. In this setup, the generation of useless events is even moreserious, because it not only overloads the application but also slows down networktra�c, a�ecting all running applications. The solution adopted in Xlib is to allowapplications to select which events are to be queued. MS-Windows, on the other hand,does not provide a way to avoid the generation of useless events, probably because theunderlying operating system (MS-DOS) does not handle networks.IUP/LED uses the callback model. This model was chosen because it allows a morenatural method of programming and avoids the problem just described. Moreover, thecallback model allows IUP to abstract the events that can occur and also handle anynecessary prolog and epilog that may be necessary around application responses toevents. THE IUP/LED SYSTEMIUP/LED is a user interface system composed of a toolkit (IUP) and a dialog speci-�cation language (LED). The IUP/LED is designed to have the following main char-acteristics:� a dialog description language (LED) that can be learned quickly;� a simple user interface speci�cation model using an abstract layout descriptions:� both native and �xed look-and-feel provided by a the IUP toolkit;� run-time interpretation for LED with minimal overhead;� portable, in that interfaces can be built for a variety of platforms, ranging fromMS-DOS text mode to Unix/Motif;� available on multiple platforms;� and expandable.Simplicity was an important factor in the design of IUP/LED. The interface elementsare created and manipulated consistently by the application through a small set offunctions; two IUP functions to set and query attributes associated with interfaceelements are of primary importance. The LED language, an expression language witha very simple syntax, is used to create the static description of the dialogs.

IUP/LED: A PORTABLE USER INTERFACE DEVELOPMENT TOOL 7LED supports the distinction between abstract and concrete layout. To describea concrete layout for a dialog is to describe the exact geometric position of eachinterface object that composes the dialog. On the other hand, to describe an abstractlayout for a dialog is to describe the relative positions of these objects. Frequently,programmers have a clear idea of the abstract layout, while the computation of theconcrete layout is complicated, tedious and error-prone. Moreover, if a dialog layoutis described abstractly, then it is simple to recalculate the concrete layout when thesize of the dialog has been changed by the user or when elements are added to orremoved from the dialog by creating prototypes or by executing the application. Theabstract layout description is based on the boxes-and-glue paradigm of the TEX textprocessor25.IUP/LED associates an attribute, named WID, to each interface element; the valueof this attribute is the information necessary to access the corresponding interfaceelement in the native system; it is typically a handle or pointer to opaque data struc-tures, an integer or a string. Thus, an application may query this value and use it asan argument in calls to the native interface system. It is in this sense that IUP/LEDis an open system.The inclusion of a small LED interpreter with an application provides support forrapid prototyping and ease of modi�cation of user interfaces. Only the LED scriptneeds to be altered, it is not necessary to compile and link the application every timethe interface changes. In fact, using this approach, the prototype for a user interfacecan be built in advance of the application. In addition, this type of facility easilysupports multiple interfaces for the same application.Both the IUP/LED development system and the supporting environment were de-signed to be portable26 in the sense that the installation of both these componentsof IUP/LED on a new computer platform requires much less e�ort than the e�ortrequired to rewrite IUP/LED for that platform. This goal was achieved through thecombination of the portability strategies described previously. In this way, IUP/LEDcan be (and has been) implemented in environments as di�erent as MS-DOS in textmode and MS-Windows. Thus, IUP/LED interface descriptions can be prepared andrun on a wide variety of computing platforms.In IUP/LED, an application is exclusively formed by a group of potentially con-current dialogs. A dialog is formed by interface elements that interact with the user,capturing and exhibiting information manipulated by the program; they correspondto top-level windows. Writing an application consists of specifying its dialogs (possiblyby using LED) and implementing the associated application routines.LED: a language for dialog speci�cationLED is an expression language for specifying dialogs; it supports three importantaspects of an interface system:� independence of dialogs from the application code;� rapid prototyping;� and customization for di�erent users and platforms.Rapid prototyping is possible because a LED program is interpreted at run time andno actual application functions are needed; it is only necessary that the main program

8 C. LEVY, L. FIGUEIREDO, M. GATTASS, C. LUCENA, D. COWANcalls IUP to load and interpret LED program. This single program can be used toquickly create and test prototypes for the interface of any application.Customizing the application can be done by the user because dialog de�nitions areavailable in text form. Since LED is a simple language that is easily understood, userscan themselves modify dialog speci�cations in order to create simpli�ed versions ofthe program, to translate the interface into another language, or even re-arrange thedialogs completely.Layout modelThe LED language supports an abstract user interface model, where dialogs are de�nedby their abstract layout and the elements that compose the dialogs are mostly speci�edby their function and not by their �nal appearance. In LED, programmers need only toprovide some parameters associated with the functionality of each interface element;appearance attributes may be speci�ed, but they are not mandatory.By using an abstract interface model, application programmers can create dialogswithout having to worry about the interface system in which the program will execute.Moreover, porting the user interface to a new environment should be immediate for it isenough to write a driver for the new native interface system. In this way, programs canrun without any changes in systems that are as di�erent from each other as MicrosoftWindows, OS/2 Presentation Manager, Motif, OpenLook, and Macintosh. The IUPtoolkit o�ers an API that implements the abstract model supported by LED.The layout model used in LED is based on the boxes-and-glue paradigm of theTEX text processor25. This model is simple, easily understood, and is able to maintainabstract layouts, independent of size and complexity. The relative position of the inter-face elements that compose a dialog remain unchanged after the size has been changedby the application user, or by the addition or removal of elements. Programmers arefreed from having to compute sizes and positions for the interface elements in eachdialog, a tedious, error-prone task that must be done several times during the softwarecycle, and also at run time.SyntaxLED is an expression language designed so that dialogs can be de�ned mostly by spec-ifying their abstract layout and the functionality of the interface objects that composethe dialog. Appearance attributes, such as color and character fonts, are optionallyspeci�ed as environment variables, similar to the ones that already exist in Unix andDOS. This distinction between mandatory information (related to functionality) andoptional information (mostly related to appearance) is explicit in the syntax of LED.The syntax of expressions in LED is simply n = f [a](p); where:� n is the name that should be used by the application in order to access theinterface element that is being de�ned by the expression f [a](p);� f is the type of interface element that is being described (currently, button,canvas, dialog, fill, frame, hbox, image, item, label, list, matrix, menu,radio, submenu, text, toggle, valuator, vbox, zbox);� a is a list of attribute-value pairs, in the form a1 = v1, a2 = v2, : : : , where ai isthe name of the attribute and vi is its value (a string);

IUP/LED: A PORTABLE USER INTERFACE DEVELOPMENT TOOL 9� p is the list of parameters that de�ne the functionality of elements of type f .Naming an expression is optional. Nevertheless, an application can only communi-cate directly with elements that have names. Thus, an application cannot change orquery the attributes of anonymous elements, even though these elements may be fullyactive.ExampleAs an example of the use of LED, consider the dialog in Figure 1. This dialog iscomposed of a text string (\File already exists!") and two buttons (labeled \Replace"and \Cancel"). The abstract layout of this dialog can be described in the followingform: the buttons are centered at the lower part of the dialog area and the text iscentered in the remaining area above the buttons. An speci�cation in LED for thislayout follows immediately from this description:
File already exists!

Replace Cancel

AttentionFigure 1. Example dialogconfirm = dialog[TITLE="Attention"](body)body = vbox(fill(), prompt, fill(), buttons)prompt = hbox(fill(), warning, fill())buttons = hbox(fill(), replace, fill(), cancel, fill())warning = label("File already exists!")replace = button("Replace", do_replace)cancel = button("Cancel", do_cancel)This example speci�cation uses the interface elements dialog, vbox, hbox, fill,label and button. These and other interface elements are described below. In theexample, all elements have been named, but this is not necessary, specially for inter-mediate elements. An equivalent speci�cation without intermediate names is:confirm = dialog[TITLE="Attention"](vbox(fill(),hbox(fill(),

10 C. LEVY, L. FIGUEIREDO, M. GATTASS, C. LUCENA, D. COWANlabel("File already exists!"),fill()),fill(),hbox(fill(),button("Replace", do_replace),fill(),button("Cancel", do_cancel),fill())))Interface elementsThe interface elements available in LED are divided in the following categories:� grouping : de�ne a common functionality for a group of elements;� composition: de�ne a form to exhibit the elements;� �lling : occupy empty spaces dynamically;� and primitive: interact with the user.Since the list of parameters that de�ne the functionality of elements may containother expressions, the elements that compose a dialog are organized in a hierarchicaltree structure. The structure corresponding to the example dialog shown in Figure 2.This hierarchical structure permits dialogs to be gradually speci�ed, combining simple,previously tested dialogs into more complex ones.
dialog

vbox

fill hbox fill hbox

fill label fill fill button fill button fillFigure 2. Dialog structure for the example speci�cationGrouping elements. Grouping elements de�ne a common functionality for a collec-tion of elements. The types of grouping elements available in LED are:� dialog: compose an interaction dialog with the user;� radio: restrict the on state to exactly one of a set of toggles;� and menu: group items and submenus.

IUP/LED: A PORTABLE USER INTERFACE DEVELOPMENT TOOL 11Composition elements. Composition elements determine whether a collection of in-terface elements are presented vertically or horizontally. Following the TEX paradigm,we have two composition elements:� hbox: present group of elements horizontally;� and vbox: present group of elements vertically.With these two composition elements, it is possible to build many dialogs with-out de�ning explicitly the coordinates of each element that composes the dialog. Theexample LED code for the confirm dialog illustrates the use of vbox for verticallyarranging the two main items (prompt and buttons), and the use of hbox for a hori-zontal arrangement of the two buttons.There is a third composition element, not present in TEX, called zbox. It models astack of interface objects; only the \top" object is visible at any time.Fill elements. There is only one �lling element: fill; it occupies the empty spaces ina dialog proportionally and dynamically. fill is responsible both for maintaining theabstract layout when the dialog is resized and for relative positioning of the interfaceelements in the composition elements (hbox and vbox). In the example, fills areused to center the label (prompt) horizontally and vertically in the dialog area. If thespeci�cation of body were:body = vbox(prompt, fill(), buttons)then the text would appear at the top of the dialog area, not in the center.Primitive elements. The primitive elements currently available in LED are:� button;� canvas: working area;� frame: creates a border around an interface element;� hotkeys: function keys;� image: static image;� item: menu item;� label: static text;� list: string list with scrollbar;� matrix: a matrix of text cells, like a spreadsheet;� submenu: menu within a menu;� text: captures a text fragment of two or more lines;� toggle: two-state button (on/o�);� and valuator: captures a numeric value.With the exception of canvas, all other primitive elements are well understood andhave the same behavior in all interface systems. The interface element canvas is a dif-ferent element because it is the main link between the graphical part of an applicationand the interface system. It is through canvases that application objects are exhibitedand manipulated by the user. This intimate connection with the application makes ithard to give an abstract de�nition for the behavior of canvas. InterViews gives a for-mal de�nition for this behavior, removing from the application the treatment of someevents such as repaint and resize. An alternative abstraction was given by Neelamkaviland Mullamey27.

12 C. LEVY, L. FIGUEIREDO, M. GATTASS, C. LUCENA, D. COWANIn IUP/LED, the behavior of canvas is simple: all events that happen on a canvasare passed on to the application, which is responsible for handling them. However,before passing events to the application, the IUP driver does handle any necessaryprolog and epilog; this typically happens for optimizing canvas redraw by setting theclipping area to the exposed area.It is important to note that, among primitive elements, canvas is the only one thatcompetes with fill for empty spaces.AttributesAttributes for interface elements are implemented as environment variables representedby the expression [a = v], where a is the name of a variable and v is its value (a string).IUP/LED implements an inheritance mechanism for attributes: the variables de�nedfor an element are automatically exported down to its children. For example, a variablede�ned for an hbox is also de�ned, with the same value, for all elements that are in thishbox. If one of these elements de�nes a variable with the same name, the associatedvalue of the element has priority over the value de�ned for the hbox. This mechanismallows global attribute assignment, with the possibility of local changes. For example,to change the character font globally for the confirm dialog, but locally in the replacebutton, one could write:confirm = dialog[FONT="Helvetica"](...)replace = button[FONT="HelveticaBold"](...)Some variable names are recognized by IUP/LED and represent attributes of nativeinterface elements. The majority of these attributes control appearance such as color,character fonts, and cursor style. Some attributes de�ne functionality; for instance,the HOTKEYS attribute associates function keys to dialogs.Names not recognized by the system can be used by the application for any pur-pose; IUP/LED stores these attributes but does not try to interpret them. This featureprovides a general-purpose, extensible attribute table, which may be used by the appli-cation; in particular, interface objects can maintain their own \state". This mechanismalso allows platform dependent attributes to be speci�ed and interpreted only by thecorresponding driver, with no consequences for other platforms. This makes it possibleto �ne-tune the interface for each platform and still maintain a single LED speci�ca-tion.IUP: a toolkit for supporting LEDIUP is a toolkit with approximately 40 functions for building and manipulating dialogsfor applications. This toolkit is basically an API for implementing LED and containsfunctions for:� converting LED speci�cations to native interface system objects;� creating interface elements directly, without using LED;� registering the application functions corresponding to the actions used in LED;� associating names with interface elements;� exhibiting and hiding dialogs;� and querying and setting attributes for interface elements.

IUP/LED: A PORTABLE USER INTERFACE DEVELOPMENT TOOL 13IUP is written in ANSI C and has been ported to many di�erent environments,such as Microsoft Windows, OpenLook via XView, Motif, and DOS. For DOS, whichdoes not contain a native interface system, we have written a complete and portableinterface system having an appearance similar to Motif.The control ow in an application that uses IUP with LED is analogous to the onesthat use other toolkits and can be summarized as follows:1. initialize IUP, by calling IupOpen;2. create dialogs by loading and interpreting LED speci�cations with IupLoad, orby calling IUP functions to create each interface element;3. register the functions corresponding to actions with IupSetFunction (in theexample, do_replace and do_cancel are actions and not application functions);4. yield control to IUP by calling IupMainLoop, which waits for user actions andcalls the corresponding application functions.Integrating IUP with LEDIn LED, we can associate names to interface elements, but these names cannot bedirectly used in the IUP functions that create and manipulate the interface elementsbecause IUP functions expect a handle. Therefore, to refer to an interface elementcreated in LED, an application has to call IupGetHandle. The code below exhibitsthe dialog in Figure 1 as speci�ed in LED in the �le attention.led:IupLoad("attention.led");IupSetFunction("do_replace", (Icallback) f_replace);IupSetFunction("do_cancel", (Icallback) f_cancel);IupShow(IupGetHandle("confirm"));Even though this code does not check for errors, all IUP functions return a codethat indicates success or failure in the execution of the function.Creating interface elements in IUPInterface elements can be created dynamically by calling IUP. However, the creationof interface elements with IUP and with LED di�ers in two speci�c ways. The �rstdi�erence is that in IUP names are not associated with interface elements at creationtime, as they are in LED. When an element is created with IUP, the correspondingfunction returns a handle, not a string name. The function IupSetHandle may beused to associate names to interface elements, after they have been created, but thisis not necessary. The second di�erence is that, in LED, the de�nition of the attributeshappens at creation time, whereas in IUP the element has to be created before itsattributes can be de�ned. The code below creates the example dialog using IUP.Ihandle *cancel, *replace, *warning, *buttons, *prompt, *body, *confirm;cancel = IupButton("Cancel", "do_cancel");replace = IupButton("Replace", "do_replace");warning = IupLabel("File already exists!");buttons = IupHbox(IupFill(), replace, IupFill(), cancel, IupFill(), NULL);prompt = IupHbox(IupFill(), warning, IupFill(), NULL);

14 C. LEVY, L. FIGUEIREDO, M. GATTASS, C. LUCENA, D. COWANbody = IupVbox(IupFill(), prompt, IupFill(), buttons, NULL);confirm = IupDialog(body);IupSetAttribute(confirm, "TITLE", "Attention");IupSetFunction("do_replace", (Icallback) f_replace);IupSetFunction("do_cancel", (Icallback) f_cancel);IupShow(confirm);As in LED, it is not necessary to keep handles to intermediate elements; the samedialog can be created with the following code:confirm = IupDialog(IupVbox(IupFill(),IupHbox(IupFill(),IupLabel("File already exists!"),IupFill(), NULL),IupFill(),IupHbox(IupFill(),IupButton("Replace", "do_replace"),IupFill(),IupButton("Cancel","do_cancel"),IupFill(), NULL), NULL));ImplementationThe main routine in the implementation of IUP/LED is the one that converts theabstract layout model to a concrete model. The algorithm has three phases (see Ap-pendix). The �rst phase computes the smallest size that holds the interface element.This size is called the natural size of each element and is de�ned in Table I. The secondphase computes current sizes, that is, the size with which elements will actually beexhibited to the user. The third and last phase computes the �nal position of eachinterface element. Implementing this algorithm required the answer to the followingquestions related to the appearance of the user interface:1. What is the policy for distribution of empty space among fills and canvases?2. Does a fill or canvas that is deep in the hierarchy receive less space than ashallow fill or canvas? If so, how much less?3. When a user explicitly de�nes the size of a element (by specifying the SIZEattribute), what size is meant, the natural or the concrete one?4. In what units does the user de�ne the size of the interface element?Prototypes were extensively studied to obtain answers to these policy questions andtheir combinations. For the �rst question, the best answer is to give priority to canvasover fill in empty space distribution. This decision was based on the functionalityof the two elements: fill is for justifying elements, while canvas is the space used bythe application and the user for communication using application objects. Therefore,it seems reasonable that increasing the size of a dialog should increase the size of the

IUP/LED: A PORTABLE USER INTERFACE DEVELOPMENT TOOL 15canvas. In other words, resizing is interpreted as meaning intention to see more workarea, not to spread interface elements further apart.The distribution of empty space for elements in the same hierarchical level is pro-portional: they all receive the same amount of empty space. The key problem is thedistribution of empty space for elements at di�erent levels. If all elements receive thesame amount of space, irrespective of their level, it would be impossible to divide adialog in regions as shown in Figure 3, because all elements would receive the sameamount of space and the dialog shown in Figure 3 would appear as illustrated in Fig-ure 4 (a or b, depending on how the layout was de�ned: a vertical box containing twohorizontal boxes; or a horizontal box containing two vertical boxes). The algorithmimplemented in IUP/LED divides a dialog into regions, distributing the empty spaceof a box equally among its extensible elements, which then divide their empty spaceequally among their own elements, and so on. Thus, the outer elements get more spacethen the inner ones, in exponential proportion.Our answer to the third question is that when a user chooses a size, the user wantsthe interface element to be shown in that speci�ed size and not in one computed bythe IUP. Therefore, it becomes clear that the size speci�ed by the user refers to thecurrent size. Thus, the size of such an interface element must not be recomputed afterthe dialog is resized. The only exception is resizable dialogs, whose sizes are alwaysrecomputed. Table I. Natural size of elementsElement Natural Sizedialog the size of the element it containsradio it has no size for it only de�nes functionalitymenu minimum to hold all its elementshbox height equal to the height of its highest element;width equal to the sum its elements widthvbox height equal to the sum its elements height;width equal to the width of its widest elementbutton somewhat larger than its text or imagecanvas the size of a characterframe somewhat larger than the size of the element it containshotkeys it has no size for it only de�nes functionalityimage the size of its imageitem somewhat larger than its text or imagelabel the size of its text or imagelist dependent on the native systemsubmenu somewhat larger than its texttext somewhat larger than its initial texttoggle minimum to hold its text or image and a feedback boxvaluator dependent on the native system

16 C. LEVY, L. FIGUEIREDO, M. GATTASS, C. LUCENA, D. COWAN
canvas 1 canvas 2

canvas 3

canvas 4

canvas 6

canvas 5

canvas 7Figure 3. Seven canvases dividing a dialog in symmetrical areas
canvas 1 canvas 2

canvas 3

canvas 4

canvas 6

canvas 5

canvas 7

canvas 1

canvas 2

canvas 3

canvas 4 canvas 5

canvas 6 canvas 7

a) b)Figure 4. Seven canvases dividing a dialog in asymmetrical areas

IUP/LED: A PORTABLE USER INTERFACE DEVELOPMENT TOOL 17Regarding the last question, it is clear that raster units or pixels should not beused as a unit of size because of the obvious dependency on device resolution. InIUP/LED, the values related to sizes are proportional to a fraction of the average sizeof a character from the character fonts used by the element in question. The widthunit represents 1/4 of the medium width of a character and the height represents 1/8of the height of a character (these values are not magical or sacred; they are also usedby MS-Windows). The use of this kind of unit guarantees that the interface elementswill show the users the same information, irrespective of the output device.Algorithm for computing concrete layoutThe Appendix contains pseudo-code for three recursive algorithms that have beenimplemented to convert abstract layout to concrete layout. Algorithm A computesnatural sizes; Algorithm B computes current sizes and distributes empty space; andAlgorithm C computes �nal sizes and positions.Algorithm A only computes the sizes of the composition elements (hbox and vbox)and group elements (dialog); the sizes of the primitive elements, such as label,button and text, are obtained by querying the driver for the native interface system.Algorithm A receives as input a node of the hierarchical structure of a dialog,representing an interface element and computes its natural size. The return valueindicates the directions (vertical or horizontal) in which the element can grow andwith which priorities (high or low). For example, an hbox that contains a fill cangrow horizontally with a low priority, and an hbox that contains a canvas can grow inboth directions with high priority. This information will be useful in order to computethe current size and to determine the distribution of empty space.All three algorithms start at the top of the hierarchical structure of a dialog, andrecursively explore the hierarchy. AlgorithmA prepares interface elements for the com-putation of their current size. Algorithm B computes the current sizes of the interfaceelements and distributes empty space. To complete the conversion from abstract layoutto concrete layout, Algorithm C positions interface elements.Since the three algorithms traverse the tree structure of a dialog exactly once, theconversion from abstract to concrete layout is linear in the number of interface ele-ments contained in a dialog. This complexity is adequate for real time recalculationof concrete layout. Nevertheless, the recalculation only occurs when the user has �n-ished resizing the dialog, in order to avoid the \blinking" e�ect that could occur if allelements had to be erased and redrawn for each mouse movement.EXPERIENCE WITH IUP/LEDTeCGraf is a research and development laboratory at the Ponti�cal Catholic Universityin Rio de Janeiro (PUC-Rio) with many industrial partners. Some forty programmersat TeCGraf have used IUP/LED in the past three years to develop several substantialproducts; the layout model and the toolkit were found to be simple to learn and useby programmers in all levels of expertise. Moreover, IUP/LED is being successfullyused in courses on Computer Graphics and User Interfaces at PUC-Rio.In this section, we report two early experiences in the use of IUP/LED soon afterthe implementation was completed. They served to validate the chosen design. We �rstexamine the use of IUP/LED in TeCGraf's PETROX project. Because this project

18 C. LEVY, L. FIGUEIREDO, M. GATTASS, C. LUCENA, D. COWANrequired the de�nition of almost �fty dialogs, we believe it provides a good evaluationof the abstract layout model. We then examine the use of IUP/LED in a ComputerGraphics course for Engineering students, where they had to create an interactivegraphics editor, a program that requires a substantial amount of interaction betweenIUP/LED and the graphics system.PETROX projectThe PETROX project required the creation of a multi-platform interactive programfor editing chemical process diagrams that provide input data for a simulator. The�fty dialogs that capture the numeric information associated with the elements of thediagram were speci�ed using LED by a chemical engineer who had no knowledge ofuser interface concepts at the beginning of the project. After one month of training,she was able to understand user interface concepts and learn both the IUP toolkitand the LED language. Since the dialogs had many interface elements in common, theengineer created a library of common LED speci�cations; every time a dialog needed acommon element, it was copied from the library and reused in the dialog speci�cation.As the dialogs were built, a need was found for two new interface elements that werenot originally in IUP/LED:� the drop down list, which provides a di�erent presentation for the primitive ele-ment list. Instead of exhibiting a complete list, only one element in the list isshown beside a button with an arrow pointing downwards. When selected, thisbutton gives the option list, allowing a new option to be selected. IUP/LED nowimplements drop down lists as an attribute for list;� the vector, that permits values to be attributed to a vector without having tode�ne a text type element for each vector position. The number of fills usedby the interface element alignment in dialogs of the PETROX project is quitelarge. Reducing this number involved creating the ALIGNMENT attribute for thehbox and vbox composition elements. The possible values of ALIGNMENT areIUP_TOP, IUP_CENTER and IUP_BOTTOM, for hbox, and IUP_LEFT, IUP_CENTERand IUP_RIGHT, for vbox. IUP/LED now contains the more powerful matrixprimitive.Graphic editorIn the Computer Graphics course, Engineering students had to create an interac-tive graphic editor using IUP/LED as interface system and a local implementation ofGKS as graphic system. They started using IUP/LED after a single lecture describ-ing the abstract layout model LED and the IUP toolkit. A quick reference manualdescribing the functions and the attributes for each interface element was made avail-able to support this activity. Although they were not sophisticated programmers, thestudents were easily able to specify dialogs and use the toolkit to build good user in-terfaces for the graphic editor. Nevertheless, some students found di�culties in usingan asynchronous rather than a sequential programming model. This problem is notattributable to IUP/LED but instead to a lack of experience in programming userinteractions using callbacks.The graphics system was used passively and all input was handled by IUP. A minor

IUP/LED: A PORTABLE USER INTERFACE DEVELOPMENT TOOL 19problem was detected: IUP coordinates are in raster units with origin at the upperright corner of the canvas, whereas GKS needs world coordinates de�ned by the pro-grammer with origin at the lower left corner. To solve this problem, a transformationroutine between both systems was added to the IUP interface for GKS.COMPARATIVE ANALYSISThere are other interface systems, such as IntGraf28, CIRL/PIWI21, XVT22 and OIToolkit29, that o�er solutions to user interface portability problems. In this section, wemake a comparison of IUP/LED with CIRL/PIWI, since in earlier papers21 CIRL/PIWIwas compared with these other toolkits.CIRL/PIWICIRL/PIWI21 is a portable user interface toolkit developed by the University of Wa-terloo. This toolkit uses a user interface abstraction to support a portability strategy.This abstraction has two components: CIRL, a language that uses tags to specify in-terface elements; and PIWI, a toolkit similar to IUP. The structure and appearanceof interface elements are speci�ed separately, and a knowledge base contains infor-mation about the look-and-feel of a speci�c native system. The two descriptions andthe knowledge base are provided as input to a compiler that produces a description ofinterface elements in the tagging language for the native system. PIWI is a toolkit sim-ilar to IUP. PIWI is available for the Macintosh, X11/Motif, Microsoft Windows, andPresentation Manager in OS/2. Besides the user interface functions, graphics func-tions for drawings are also available. The interface elements communicate with theapplication through events, where each dialog has an accompanying event handlingroutine.CIRL/PIWI and IUP/LED share the following common features:� the implementation of a tagging language;� layouts are de�ned without having to de�ne element coordinates;� the implementation of a toolkit;� and dialogs inherit the native look-and-feel.Although the goals are similar, CIRL/PIWI and IUP/LED were developed inde-pendently. There are several di�erences that separate the two solutions, including:� the CIRL compiler uses a knowledge base containing information about the look-and-feel of di�erent interface systems. This knowledge base allows the compilerto make decisions related to the layout that were not de�ned by the tagging orappearance model. On the other hand, LED de�nes a very simple model of layoutde�nitions based on the boxes-and-glue paradigm of the TEX processor;� the CIRL compiler produces a speci�cation in the tagging language of the nativeinterface system that then needs to be compiled and linked to the application.LED speci�cations are interpreted at run time, potentially decreasing the timerequired to produce a prototype;� interface elements can only be created through CIRL, while in IUP/LED theinterface elements can be de�ned by using either LED or IUP;

20 C. LEVY, L. FIGUEIREDO, M. GATTASS, C. LUCENA, D. COWAN� IUP/LED provides a general-purpose attribute mechanism that allows the ap-pearance of interface elements to be de�ned and �ne-tuned for speci�c interfacesystems. In CIRL, the appearance of interface elements are de�ned in an optional�le; �ne-tuning is done based on the tagging created by the CIRL compiler, andit is not possible to attach application speci�c information to interface elements;� in CIRL/PIWI, the communication between interface elements and the applica-tion is based on the event model; in IUP/LED, this communication is based onthe callback model;� IUP/LED supports a �xed look-and-feel in addition to a native look-and-feel;� CIRL/PIWI supports better �ne-tuning of the user interface than IUP/LED.Since CIRL/PIWI creates a description of interface elements in the tagging lan-guage of the native interface system, a �nal adjustment can be made at thatlevel. IUP/LED only allows �ne-tuning with the characteristics known to theIUP driver for the native interface system. Nevertheless, IUP allows native in-terface elements to be accessed through the WID attribute of the correspondingvirtual elements, allowing dynamic �ne-tuning through the functions of the nativeinterface system. CONTRIBUTIONSIUP/LED has made a number of contributions to technology supporting the develop-ment of portable user interface toolkits:� IUP/LED de�nes an abstract layout model that allows dialogs to be created in anatural form, without having to compute the position of the interface elements;� the model used by IUP/LED can be implemented in many di�erent interfacesystems;� LED is an expression language with a simple syntax that can be learned quickly;� LED describes a dialog using its functions; appearance attributes are optional;� LED allows applications to be customized at run time, for di�erent users andplatforms, by the users themselves. There is no need to recompile or relink anapplication to customize it;� LED o�ers an attribute mechanism that allows speci�c adaptations to an inter-face system, and makes it possible to attach application information directly tothe interface elements;� IUP is a toolkit that allows portable interactive programs to be built withoutforcing programmers to be knowledgeable about the native interface system;� IUP allows programs to have both the system's native look-and-feel, which helpsthe user of only one environment, and a �xed look-and-feel, which helps the userof only one application who needs to run it on di�erent machines;� IUP has only forty functions, a very small group when compared to the hundredsof functions, of MS-Windows, the Macintosh Toolbox, and Motif. This featuremakes it easy to learn the IUP functions quickly.Although IUP does not contain primitives for drawing on canvases, complete porta-bility of graphics applications that use IUP can be achieved by using a platform in-dependent graphics package, such as GKS or the one de�ned by PIWI. Such graphicspackages only need to inquire about the value of the WID attribute of canvases togain access to the necessary information for using native graphics primitives. In other

IUP/LED: A PORTABLE USER INTERFACE DEVELOPMENT TOOL 21words, portability of interfaces to application data can be ensured by combining apassive portable graphics package with an interface element that receives events. IUPprovides an abstraction for an event recipient (canvas) and a simple mechanism forlinking these two components in a portable way.CONCLUSIONSIn this paper, we have described a portable user interface development tool calledIUP/LED. LED is a tagging language for specifying dialogs, and IUP is a toolkit forcreating dialogs and for connecting dialogs speci�ed in LED to the native system.IUP/LED allows interactive applications to be moved easily to di�erent computerenvironments with minimal e�ort.We have described the layout problem for interface dialogs and have indicated thatit is di�cult to de�ne layouts by using explicit geometric positions in a concrete layoutmodel. As a solution to this problem, IUP/LED de�nes an abstract layout model basedon the boxes-and-glue paradigm of the TEX text processor. The main advantages ofthis model are:� it frees programmers from computing interface element sizes and positions;� and it maintains abstract layouts after any change in the size made by the ap-plication user or by the addition or removal of elements.This model does not work with dialogs with geometrically irregular layouts; however,this type of dialog is rarely used. In addition, interface designers can always �nd ageometrically regular layout that is able to expose the required information adequately.The dialog tagging language, LED, implements an abstract layout model by anexpression language with a simple syntax that allows it to be learned quickly even bydomain experts with limited computer experience. LED is a powerful language thatallows:� interface elements to be de�ned without necessarily de�ning appearance at-tributes;� dialog de�nition to be separated from the application;� and customization for di�erent users and platforms.The LED language served as the basis for developing the IUP toolkit that allows theapplication to inherit or ignore the look-and-feel of the native interface system. It isthrough the IUP toolkit that the application controls the dynamics of the interfaceelements de�ned in LED. The basic services provided by IUP are:� convert the tagging in LED to native interface system objects;� create interface elements dynamically without using LED;� bind application functions to the actions used in LED;� associate names with elements;� exhibit and hide the dialogs;� and set and query attributes for the interface elements.IUP is a very small toolkit with only forty functions that are easily learned, speciallywhen compared to the hundreds of functions de�ned in MS-Windows, Macintosh Tool-box, and Motif. This small number of functions was motivated by the model used by

22 C. LEVY, L. FIGUEIREDO, M. GATTASS, C. LUCENA, D. COWANXView. Optional information for interface elements are not provided by calling func-tions but instead as element attributes. In this approach, all element manipulation isthrough two functions: one to query and the other to set a value for each attribute.The advantage of this approach is that it is easy to extend IUP. On the other hand,programmers must learn not only the API but also which attributes are valid for eachelement. However, programmers do not need to learn about attributes until they knowhow to implement the desired functionality; this important �rst step is made easierby the small size of the IUP toolkit.The main di�culty in developing IUP/LED was in building the algorithm to trans-form the abstract layout into a concrete one; we have seen that many natural alterna-tives exist for maintaining abstract layout.The following improvements to IUP/LED are currently under development:� developing an interactive dialog editor for IUP/LED30;� allowing reference to interface elements by name rather than through their handleto allow reuse of parts of dialogs without copying;� adding a platform independent graphics package;� implementing help and clipboard mechanisms.� and creating APIs to other languages, such as Fortran, C++, and Lua31. Lua isa language developed by TeCGraf; which is both interpreted and procedural andcould be a more powerful replacement for LED.An important and interesting theme refers to the Multiple Document Interface(MDI) concept introduced in MS-Windows. This concept standardizes the use and pro-gramming of the applications that allow users to work with many documents (�les)simultaneously. There are similar concepts in OS/2 Presentation Manager and theMacintosh. An analysis of the real bene�t of the MDI and of how this concept may beimplemented in other interface systems is a question that should be considered.Another concept largely used in interface systems is the dynamic exchange of databetween applications using approaches such as Dynamic Data Exchange (DDE) inMS-Windows. Even though this concept does not directly deal with the user interface,it enables the integration of data between applications.ACKNOWLEDGEMENTSWe would like to thank the sta� at TeCGraf for using and testing IUP/LED in itsindustrial products. IUP/LED is being developed in partnership with the researchcenter at PETROBR�AS (The Brazilian Oil Company). The authors are partially sup-ported by research and development grants from the Brazilian Council for Scienti�cand Technological Development (CNPq).APPENDIXThis appendix contains simpli�ed pseudo-code for the algorithms that compute con-crete layout from abstract layout.Algorithm A. Compute natural sizes; return expansion information

IUP/LED: A PORTABLE USER INTERFACE DEVELOPMENT TOOL 23function Nsize(n): integercase type(n)dialog:compute Nsize(child(n))expansion(n) both directionsNwidth(n) Nwidth(child(c))Nheight(n) Nheight(child(c))hbox:expansion(n) no directionNwidth(n) 0Nheight(n) 0for each child c of n doexpansion(n) expansion(n) combined with Nsize(c)Nwidth(n) Nwidth + Nwidth(c)Nheight(n) max(Nheight(n),Nheight(c))vbox:expansion(n) no directionNwidth(n) 0Nheight(n) 0for each child c of ndo expansion(n) expansion(n) combined with Nsize(c)Nwidth(n) max(Nwidth(n),Nwidth(c))Nheight(n) Nheight + Nheight(c);canvas:get natural size from native systemexpansion(n) both directions with high priorityfill:Nwidth(n) 0Nheight(n) 0if n is inside an hbox thenexpansion(n) horizontal with low priorityelseexpansion(n) vertical with low priorityother:get natural size from native systemexpansion(n) no directionreturn expansion(n)

24 C. LEVY, L. FIGUEIREDO, M. GATTASS, C. LUCENA, D. COWANAlgorithm B. Compute current sizes and distribute empty spacefunction Csize(n,w,h)if n can expand horizontally thenCwidth(n) max(Nwidth(n),w)elseCwidth(n) Nwidth(n)if n can expand vertically thenCheight(n) max(Nheight(n),h)elseCheight(n) Nheight(n)case type(n)dialog:Csize(child(n),Cwidth(n),Cheight(n))hbox:if n expands horizontally with high priority thenm number of children on n that expand horizontally with high priorityspaces Cwidth(n) � Nwidth(n)/mpriority highelsem number of children on n that expand horizontallyspaces Cwidth(n) � Nwidth(n)/mpriority lowfor each child c of n doif c expands horizontally with high priority and priority is high thenw spaceselseif c expands horizontally with low priority and priority is low thenw spaceselsew 0Csize(c,Cwidth(c)+w,Cheight(n))vbox:if n expands vertically with high priority thenm number of children on n that expand vertically with high priorityspaces Cheight(n) � Nheight(n)/mpriority highelsem number of children on n that expand verticallyspaces Cheight(n) � Nheight(n)/mpriority lowfor each child c of n doif c expands vertically with high priority and priority is high thenh spaceselseif c expands vertically with low priority and priority is low thenh spaceselse

IUP/LED: A PORTABLE USER INTERFACE DEVELOPMENT TOOL 25h 0Csize(c,Cwidth(c),Cheight(n)+h)Algorithm C. Compute �nal sizes and positionsfunction position(n,x,y)x(n) xy(n) ycase type(n)dialog:position(child(n),x,y)hbox:foreach child c of n doposition(c,x,y)x x + Cwidth(c)vbox:for each child c of n doposition(c,x,y)y y + Cheight(c) REFERENCES1. H. R. Hartson and D. Hix, `Human-Computer Interface Development: Concepts and Systems forits Management', ACM Computing Surveys, 21(1), 5{92 (1989).2. D. Heller, XView Programming Manual, volume 7, O'Reilly & Associates, Inc., Sebastopol, Cal-ifornia, 2 edition, July 1990.3. Open Software Foundation, OSF/MOTIF Programmer's Guide, Revision 1.1, Prentice Hall, En-glewood Cli�s, New Jersey, 1991.4. Sun Microsystems Inc., Open Look Intrinsics Toolkit Widget Set Programmers's Guide, RevisionA, June 11 1990.5. C. Petzold, Programming Windows: the Microsoft Guide to Writing Applications for Windows 3,Microsoft Press, Redmond, Washington, 1990.6. Apple Computer, Inc., Inside Macintosh, volume 1, Addison-Wesley, Massachusetts, USA, 1985.7. M. Green, `The University of Alberta User Interface Management System', Proceedings of SIG-GRAPH'85,12th Annual Conference, New York, July 1985, pp. 205{213. ACM. San Francisco,California, July 22-26.8. H. R. Hartson, D. Hix, and R. W. Ehrich, `A Human-computer Dialogue Management System',Proceedings of INTERACT'84, First IFIP Conference on Human-Computer Interaction, London,September 1984, pp. 57{61. International Federation for Information Processing.9. A. Marcus and A. van Dam, `User Interface Developments for the Nineties', IEEE Computer,24(9), 49{57 (1991).10. Microsoft, Visual Basic Programming System for Windows version 2.0, Programmer's Guide,Microsoft Corporation, 1992.11. A. Marcus, Graphic Design for Electronic Documents and User Interfaces, Addison-Wesley, 1992.12. L. H. Figueiredo, C. S. Souza, M. Gattass, and L. C. G. Coelho, `Gera�c~ao de Interfaces paraCaptura de Dados sobre Desenhos', Anais do V SIBGRAPI, 169{175 (1992).13. D. Hix, `Generation of User Interface Management Systems', IEEE Software, 77{87 (1990).14. C. J. P. Lucena, D. D. Cowan, I. M. Campos, and R. H. B. Cabral, `Interface as Speci�cationsin the MIDAS User Interface Development System', ACM SIGSOFT, 15(2), 55{72 (1990).15. Brad A. Myers and Mary Beth Rosson, `Survey on user interface programming', Proceedings ofCHI'92, 1992, pp. 195{202.

26 C. LEVY, L. FIGUEIREDO, M. GATTASS, C. LUCENA, D. COWAN16. D. D. Cowan, C. M. Durance, Giguere E., and G. M. Pianosi, `CIRL/PIWI: A GUI ToolkitSupporting Retargetability', Software: Practice & Experience, 23(5), 511{527 (1992).17. Donnalyn Frey, `Unix vs. Unix', Dr. Dobb's Journal, 146, 28{35 (1988).18. G Blackham, `Building Software for Portability', Dr. Dobb's Journal, 146, 18{27 (1988).19. C. M. Durance, `An Approach to Application Software Mobility Across User Interface Toolkits',Master's Thesis, Faculty of Mathematics, University of Waterloo, Waterloo, Ontario, Canada,1990.20. IEEE, Standard 1003.1-1988 (Posix), IEEE, 1988.21. B. Kernighan and D. Ritchie, The C Programming Language, Addison-Wesley, Reading, Mas-sachusetts, USA, 2 edition, 1988.22. M. J. Rochkind, `XVT: A Virtual Toolkit for Portability between Window Systems', USENIX,151{163 (1989).23. M. A. Linton, J. M. Vlissides, and P. R. Calder, `Composing User Interfaces with InterViews',IEEE Computer, 8{22 (1989).24. G. Avrahami, K. P. Brooks, and M. H. Brown, `A Two-view Approach to Constructing UserInterfaces', Computer Graphics, 23, 137{146 (1989).25. D. E. Knuth, The TEXbook, Addison-Wesley, 1984.26. D. D. Cowan and T. A. Wilkinson, `Portable Software: An Overview', Proceedings of the1984Canadian Conference on Industrial Computer Systems, Ottawa, May 1984, pp. 68{1{68{7.27. F. Neelamkavil and O. Mullarney, `Separating Graphics from Applications in the Design of UserInterfaces', The Computer Journal, 437{443 (1990).28. TeCGraf,Manual de Referência do IntGraf: Sistema de Interface Gr�a�ca com Usu�ario, Pontif��ciaUniversidade Cat�olica, Rio de Janeiro, 1991.29. Neuron Data, `Open Interface Toolbox'. 156 University Avenue, Palo Alto, CA 94301, 1991.30. R. O. Prates, `Visual LED: uma ferramenta interativa para gera�c~ao de interfaces gr�a�cas', Mas-ter's Thesis, Departamento de Inform�atica, PUC-Rio, 1994.31. R. Ierusalimschy, L. H. de Figueiredo, and W. Celes Filho, `Lua|an extensible extension lan-guage'. submitted to Software: Practice & Experience.

